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SUMMARY

This project was performed to support the Defense Advanced Research Projects

Agency (DARPA) program for calibrating the Soviet nuclear test site at Semipalatinsk by
generating spherical waves in granite obtained from a borehole adjacent to the site of the

Joint Verification Experiment (JVE). Particle velocity histories in cores of Sierra White

granite and rocks obtained from a site on ML Katahdin, Maine, were measured in

laboratory spherical wave experiments. The objectives were to (1) determine effects of

pore condition and effective stress on spherical wave propagation and attenuation, and (2)

investigate coupling and attenuation properties in different low porosity "hard" rocks to
find a suitable analog to the JVE rock and determine if attenuation is independent of the

hard rock constituents. Effects of initial porosity, n, on attenuation were determined by

comparing results from Katahdin limestone (n = 1%) and Indiana limestone (n = 13%).

The spherical wave source was a 3/8-g charge of PETN powder packed to a density

of 1.0 g/cm3. Particle velocity histories were measured at different ranges by using

concentric copper loops placed in machined grooves along the midplane of the specirhen.

An external axial magnetic field was applied to tie specimen, and the particle velocity was

measured by monitoring the induced voltage generated by the gages as they moved through

the magnetic field. The particle velocity is proportional to the induced voltage, the

conductor length, and the magnetic field strength according to Faraday's law.

To determine the effects of pore condition on attenuation, experiments were

performed in Sierra White granite (n = 1%) with three initial conditions: (1) dry, (2)

saturated with zero effective stress, and (3) saturated with 11.7 MPa initial effective stress.

To determine coupling and attenuation properties in different low porosity hard rocks,

experiments were performed in Katahdin coarse- and fine-grained granite and Katahdin
limestone.

The experimental results showed that (1) the pore condition (i.e., dry versus

saturated) and initial effective stress conditions had little, if any, effect on velocity and

displacement attenuation in low porosity Sierra White granite; and (2) the attenuation of

peak displacements in Sierra White granite, Katahdin coarse- and fine-grained granite, and

Katahdin limestone was the same within the scatter of the experimental data. Comparisons

of high porosity (13%) Indiana limestone and low porosity (1%) Katahdin limestone

showed a substantial effect of initial porosity on attenuation.
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SECTION 1

INTRODUCTION

The objective of this research project was to support the Defense Advanced

Research Projects Agency (DARPA) program for calibrating the Soviet nuclear test site at
Semipalatinsk by generating spherical waves in granite obtained from a borehole drilled
adjacent to the site of the joint verification experiment (JVE). Because the Semipalatinsk

region is geologically diverse in terms of physical properties and degrees of saturation,

additional objectives were established during the course of the DARPA program: (1) to
investigate the effect of initial pore condition on wave propagation in low porosity (<1%)
hard rock and (2) to investigate a variety of low porosity hard rocks to determine how
variability in the rock constituents affects wave propagation and attenuation.

We performed three spherical wave experiments in Sierra White granite under

different initial pore conditions to determine how pore fluid and initial effective stress affect
wave propagation and attenuation. The initial pore conditions were (1) dry, (2) saturated
with zero initial effective stress (i.e., equal overburden and pore pressure), and (3)
saturated with 11.7 MPa initial effective stress. The granite specimens had initial porosities

less than 1%.

Mt. Katahdin, Maine, has been proposed to be geologically analogous to the Soviet

test site. We performed spherical wave experiments in three different hard rocks obtained
from the Mt. Katahdin site to compare the results with those from specimens from the JVE
site and to investigate the more general question of how rock constituents in low porosity
hard rock affect coupling and attenuation. The ML Katahdin specimens tested included
(1) coarse-grain granite, (2) fine-grain granite, and (3) metamorphosed limestone. Each of

these rocks had initial porosities less than 1%.

In this report, we present (1) the results of spherical wave experiments in Sierra

White granite, in which we investigated the effects of pore fluid and initial effective stress

on wave propagation; (2) the results of spherical wave experiments in different hard rocks

obtained from Mt. Katahdin, Maine; and (3) comparisons between high and low porosity
limestone that demonstrate how initial porosity affects coupling and attenuation. The
results of the spherical wave experiments in the rock obtained from the site of the JVE

experiment are presented in a separate report.



In Section 2, we describe the experimental technique and configuration for the
spherical wave experiments. In Section 3, we present the experimental results obtained in

Sierra White granite and the Mt. Katahdin specimens. A few results from a separate effort
in a high porosity (13%) Indiana limestone are also presented for comparison with the
results from the low porosity (1%) Katahdin limestone. Section 4 describes our
conclusions from this work and recommendations for additional research. Strain histories

and strain path data from these experiments are shown in Appendix A, and reduced

displacement potential (RDP) and reduced velocity potential (RVP) histories are shown in

Appendix B. Figures are grouped together at the end of the report and each appendix.
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SECTION 2

EXPERIMENTAL CONFIGURATION

The configuration for the spherical wave experiments is shown in Figure 1. (All

figures are at the end of the text.) In these experiments, a 3/8-g charge of PETN powder is

detonated at the center of a 16.5-cm-diameter cylindrical specimen, and particle velocity
histories are measured at different radii from the center of the charge. Each sample is

prepared by grinding its face flat and machining a spherical cavity for the charge and
grooves for the particle velocity (PV) gages.

The gages used to measure particle velocity are copper loops that are mounted into

the machined grooves in the specimen. A constant axial magnetic field is applied by a
solenoid surrounding the specimen, and the particle velocity is measured by monitoring the

induced voltage generated by the copper loop as it moves at the local particle velocity
through the magnetic field. According to Faraday's law, the induced voltage is

proportional to the length of the conductor, the magnetic field strength, and the particle

velocity. The magnetic field strength is determined in each test by measuring the current

supplied to the solenoid. The charge is detonated by a strand of 2-grain mild detonating
fuse (MDF) that is channelled through a stainless steel tube extending out of the pressure
vessel and initiated by an exploding bridge wire.

Although the stainless steel tube is not stemmed, code calculations of our

experimental geometry have shown that the reduction in cavity pressure due to venting in
the tube is small during the recording period and the effect on the propagated pulse in the

medium is negligible.

For experiments where the specimen was dry, we isolated the external pressurizing

fluid (overburden) from the sample by applying a rubber seal to the outside of the

specimen. In experiments where the specimen was saturated and the pore pressure was
equal to the overburden pressure (zero effective stress), we first saturated the specimen in a
separate vessel and then installed the explosive charge. The specimen was then put into the

test chamber containing the solenoid, and the overburden pressure was applied. In the

experiment with nonzero effective stress, the pore pressure was isolated from the
overburden pressure by first surrounding the saturated specimen with a fine wire mesh that

acted as a reservoir and flow path for the pore fluid. The sample and mesh were then

3



surrounded by a thin aluminum sleeve around the circumference and end caps on the top

and bottom with feedthroughs for the hydraulic line and wire egress. This assembly was

inserted in a rubber jacket and epoxied to the end caps. Pressure gages were installed to

measure the overburden pressure and pore pressure separately.

The specimens were saturated by (1) applying and maintaining a vacuum for 12 to

24 hours to remove air from the pore space, and (2) immersing the specimen in

deionized/degassed water and applying an overburden pressure to the sample with a flatjack

for an additional 12 to 24 hours.

4



SECTION 3

EXPERIMENTAL RESULTS

In this section, we present results from (1) experiments in Sierra White granite

under different initial pore conditions and (2) experiments in specimens obtained from Mt.

Katahdin, Maine, and (3) a comparison of results from low porosity and high porosity

limestone.

EFFECTS OF PORE FLUID AND INITIAL EFFECTIVE STRESS

We performed three experiments in Sierra White granite with porosity <1% to

compare the response for different pore conditions. These conditions were (1) dry (Test

564), (2) saturated with equal overburden and pore pressure (i.e., zero effective stress)

(Test 564), and (3) saturated with an initial effective stress (Pc) of 11.7 MPa (Test 565).

Sets of the particle velocity records from gages at the same location in each

experiment are shown superimposed in Figures 2 through 9. Unfortunately, we did not
recover data from the gages at the 50-mm and 65-mm ranges in Test 563 because of a

malfunction in the recording equipment. As shown in Figures 6 and 7, the peak velocities

at the 30-mm and 40-mm ranges in Test 565 were not captured because of an apparent loss

in high frequency response of the recording equipment for these channels; therefore, these

data are not included in the peak particle velocity attenuation plot (Figure 10). Posttest

cavity diameters were measured to be about 1.3 cm.

Particle displacement histories were obtained by temporal integration of the velocity

records. Sets of particle displacement histories at each gage location for the three different

pore conditions are shown superimposed in Figures 11 through 18, and attenuation of peak

displacement with range is shown in Figure 19. The velocity and displacement attenuation

exponents shown in Figures 10 and 19 are 1.23 and 1.15, respectively.

Overall, the agreement between velocity and displacement histories for the different

pore conditions is quite good, and any effects of pore fluid or initial effective stress cannot

easily be resolved within the scatter of the experimental data. This result applies only to
very low porosity rocks (<1%), and probably does not extend to rocks with higher initial

porosities.

5



On the basis of the results in Sierra White granite, the experiments on the JVE and

Mt. Katahdin specimens were performed under saturated, zero effective stress conditions,

which is the least complicated sample preparation scheme.

EXPERIMENTAL RESULTS FROM MT. KATAHDIN SPECIMENS

Our objective in these experiments was to determine how variabilities in the

constituents of low porosity hard rock affect coupling and attenuation. The Mt. Katahdin,

Maine, site has been proposed to be geologically analogous to the Soviet test site. We

performed spherical wave experiments in three different hard rocks obtained from the Mt.

Katahdin site: (1) fine-grained Katahdin granite, (2) coarse-grained Katahdin granite, and

(3) low porosity Katahdin limestone.

Although other rock types were obtained from the Katahdin site, recovery of cores

of the size we need for our experiments was limited to these three specimen types. The

fine-grain and coarse-grain granites represent two members of the Katahdin batholith.

These rocks are essentially structureless and are about two-thirds feldspar and one-third

quartz, with 5-10% biotite. The limestone is reefal and reef detritus; it is sheared and

penetrated with joints healed with silaceous or calcareous cement. Each of these rocks had

initial porosities lower than 1%.

We recovered data from four of the six experiments performed in the Katahdin

specimens. Unfortunately, the charge apparently burned instead of detonated in two of the

experiments (one Katahdin coarse-grain granite and one Katahdin limestone), causing these

specimens to fracture from the long-duration loading of the cavity.

The results from the Katahdin granite specimens (Tests 571, 577, and 579) are

shown with the results from an experiment in Sierra White granite (Test 563) for

comparison with another low porosity hard rock. In a separate comparison, the results

from the Katahdin limestone experiment (Test 572) are shown with those from a Katahdin

fine-grain granite (Test 571).

The time of arrival is shown as a function of the gage distance from the center of the

source for the granite experiments in Figure 20(a). A least-squares fit to the data results in

a wave velocity of about 5.6 km/s. The single Katahdin limestone experiment showed a

wave velocity of about 6.6 km/s [Figure 20(b)].

The measured particle velocity histories at each measurement location for Sierra

White granite and fine- and coarse-grained Katahdin granite are shown superimposed in

6



Figures 21 through 27. Signals recorded at the 40-mm location are not included because a
malfunction in the recording equipment erroneously attenuated the signal.

Overall, the results show very similar energy coupling in each of the different types
of granite, characterized by an initial sharp rise to the peak velocity, followed by positive
(outward) motion lasting about 6-7 gts, and a negative (rebound) phase increasing in

duration with propagation distance. Because of the very fast rise time in this material, the
peak particle velocity shows experimental scatter on the order of 20%. After the peak, the
material response is essentially the same in each type of granite.

The results from each measurement location in the Katahdin limestone specimen
(Test 572) are shown superimposed with those from a typical granite experiment (Katahdin
fine-grain, Test 571) in Figures 28 through 33. The results show a longer rise time and a
lower peak particle velocity in the limestone, but the pulse shapes after the peak are similar.
We believe that the lower peak particle velocity in limestone is a real effect, but because the
repeat experiment in limestone was unsuccessful, we can not confirm this result. These
differences, however, do not have a significant effect on either the peak displacements or
displacement histories.

Attenuation of peak velocity for the Sierra White granite and Katahdin specimens is
shown in Figure 34. Except for the limestone specimen, the peak velocity attenuation
shows a scatter of about 20%. The very fast rise time in granite makes it difficult to
separate any material effects (on peak particle velocity) from experimental artifacts such as
failure to capture the peak because of the sampling rate and frequency response of the
recording equipment. For example, in two experiments, Tests 577 and 579, we increased
the sampling rate of the digital oscilloscope from 50 ns/point to 20 ns/point, and we
observed an increase in peak particle velocity of about 20%. However, capturing peak
velocity has little effect on the displacements.

The displacement histories at each gage location for the experiments on Katahdin
specimens are shown in Figures 35 through 41. These data provide the displacement
gradients needed to obtain approximate strain and strain path information from these
experiments. Peak displacement attenuations for Sierra White granite, Katahdin fine- and
coarse-grained granite, and Katahdin limestone are shown superimposed in Figure 42. As

seen in Figure 42, the peak displacements for the different rock types are grouped in a
narrow band, and any differences between the rock types can not easily be distinguished

from the scatter in the experimental data.

7



EFFECTS OF INITIAL POROSITY

In a previous experimental effort,1 we generated particle velocity histories using a

3/8-g spherical explosive source in saturated Indiana limestone. The total porosity of
Indiana limestone was about 12.6%. A comparison of the particle velocity records for this

limestone and the Katahdin limestone at one representative gage location (50 mm) is shown

in Figure 43. The corresponding displacements are shown in Figure 44, and attenuation of

peak displacement with range for each gage location is shown in Figure 45. These results
demonstrate the effect of initial porosity on coupling and attenuation and show a much
longer particle velocity pulse duration (and corresponding displacement) in the high
porosity Indiana limestone than in the lower porosity (1%) Katahdin limestone.

1S. A. Miller and A. L. Florence, "Spherical Waves in Limestone," SRI Technical Report DNA-TR-89-
263, August 1990.
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SECTION 4

CONCLUSIONS AND RECOMMENDATIONS

The results of the spherical wave experiments showed

" Little effect of the initial pore fluid condition on attenuation in low
porosity (<1%) granite.

* Similar energy coupling and attenuation in different types of low porosity
hard rock, although lower peak velocities were observed in limestone
than in granite.

* A significant difference in wave shape and attenuation between low
porosity (<1%) and high porosity (13%) limestone.

We recommend (1) additional experiments for different initial pore conditions in

higher porosity specimens to determine how effective stress affects wave propagation and

attenuation, and (2) additional experiments on JVE specimens for comparison with the

results presented here.
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Figure 1. Configuration of spherical wave particle velocity experiments
in Sierra White granite and Katahdin specimens.
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Figure 2. Particle velocity histories for three different pore conditions at 1 0-mm range
in Sierra White granite.



120 .. . . .. . . I

Pc (MPa) Pp (MPa)

Test 563 SAT. 11.7 11.7
100 ........... Test 564 DRY 11.7 0

... Test 565 SAT. 11.7 0

80

~60

40

20

0 5 10 15 20 25

TIME (uis)
RA-6645-9

Figure&3 Particle velocity histories for three different pore conditions at 15-mm range
in Sierra White granite.
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Figure 4. Particle velocity histories for three different pore conditions at 20-mm range
in Sierra White granite.
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Figure&5 Particle velocity histories for three different pore conditions at 25-mm range
in Sierra White granite.
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Figure&6 Particle ve~ccity histories for three different pore conditions at 30-mm range
in Sierra White granite.
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Figure 7. Particle velocity histories for three different pore conditions at 40-mm range
in Sierra White granite.
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Figure 8. Particle velocity histories for different pore conditions at 50-mm range
in Sierra White granite.
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Figure 9. Particle velocity histories for different pore conditions at 65-mm range
in Sierra White granite.
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Figure 10. Attenuation of peak velocity for three different pore conditions in
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Figure 11. Displacement histories for three different pore conditions at 10-mm range
in Sierra White granite.
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Figure'12. Displacement histories for three different pore conditions at 15-mm range
in Sierra White granite.
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Figure 13. Displacement histories for three different pore conditions at 20-mm range
in Sierra White granite.
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Figure 14. Displacement histories for three different pore conditions at 25-mm range
in Sierra White granite.
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Figure 15. Displacement histories for three different pore conditions at 30-mm range
in Sierra White granite.
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Figure 16. Displacement histories for three different pore conditions at 40-mm range
in Sierra White granite.
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Figure 17. Displacement histories for different pore conditions at 50-mm range
In Sierra White granite.
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Figure 18. Displacement histories for different pore conditions at 65-mm range
in Sierra White granite.

27



1000. I

Pc (MPa) Pp (MPa)

X Test 563 SAT. 11.7 11.7
+ Test 564 DRY. 11.7 0
0J Test 565 SAT. 11.7 0

+

zw
S 1000

Where r= Scaled Range

10 1

1 10 100 1000

SCALED RANGE (m,/kT 113)

RA-6645-25A
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Figure 21. Particle velocity histories measured at 10-mm range in different types
of granite.
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Figure 22. Particle velocity histories measured at 15-mm range in different types
of granite.
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Figure 23. Particle velocity histories measured at 20-mm range in different types
of granite.
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Figure 24. Particle velocity histories measured at 25-mm range in different types
of granite.
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Figure 25. Particle velocity histories measured at 30-mm range in different types
of granite.
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Figure 26. Particle velocity histories measured at 50-mm range in different types
of granite.
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Figure 27. Particle velocity histories measured at 65-mm range in different types
of granite.
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Figure 28. Comparison of velocity histories at 10-mm range for Katahdirn fine-grain
granite and Katahdin limestone.
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Figure 29. Comparison of velocity histories at 15-mm range for Katahdin fine-grain
granite and Katahdin limestone.
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Figure 30. Comparison of velocity histories at 20-mm range for Katahdin fine-grain
granite and Katahdin limestone.
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Figure 31. Comparison of velocity histories at 25-mm range for Katahdin fine-grain
granite and Katahdin limestone.
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Figure 32. Comparison of velocity histories at 50-mm range for Katahdin fine-grain
granite and Katahdin limestone.
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Figure 33. Comparison of velocity histories at 65-mm range for Katahdin fine-grain
granite and Katahdin limestone.

42



1000

X Sierra White (Test 563)
+ Katahdin Fine-Grain (Test 571)
A Katahdin Limestone (Test 572)
EO Katahdin Coarse-Grain (Test S77)
0 Katahdin Fine-Grain (Test 579)

.~100

ZnA

a. 10

1 10 100 1000

SCALED RANGE (m/kT"/ 3)

RA-W65-77

Figure 34. Attenuation of peak particle velocity in Sierra White granite and
Katahdin granites and limestone.
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Figure 35. Displacement histories measured at 10-mm range in different types
of granite and Katahdin limestone.
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Figure 36. Displacement histories measured at 15-mm range in different types
of granite and Katahdin limestone.
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Figure 37. Displacement histories measured at 20-mm range in different types of
granite and Katahdin limestone.
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Figure 38. Displacement histories measured at 25-mm range in different types of
granite and Katahdin limestone.
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Figure 39. Displacement histories at 30-mm range in different types of granite.
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Figure 40. Displacement histories at 50-mm range in different types of granite.
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Figure 42. Attenuation of peak displacement with range in Sierra White
granite and Katahdin granites and limestone.
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Figure 43. Comparison of velocity histories at 50-mm range for low-porosity
(1%) Katahdin limestone and high-porosity (13%) Indiana limestone.

52



60

5 0

40 :

30 102 04
TIEo1s

RA*-6"

Fiue 4 omaiono islcmethitresa 0-mrng o lo-

pooiy(o)Kthi ietn n ihprst 1%
Inin20msoe

5 =3%



100.+ Limestone-Porosity

x + Indiana Limestone, n - 13% (Test 560)
X Indiana Limestone, n - 13% (Test 562)

L Katahdin Limestone, n - 1% (Test 572)"

+

&AX

z +wI x

0

Ax

10........
0.1 1 10 100

RANGE (cm)
RA-6645-26A

Figure 45. Comparison of peak displacement attenuation with range for low-
porosity Katahdin limestone and high-porosity Indiana limestone.
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APPENDIX A

STRAIN HISTORIES AND STRAIN PATHS

The radial displacement histories allow us to determine the spatial distribution of

radial displacement, ur, at fixed times, each spatial point corresponding to the range of a

gage. From the spatial distribution of displacements, we obtain approximations for the
radial strain, er = aur/ar, at a fixed time. The tangential strain component is simply e =

ur/r; where r is the radius.

Because the accuracy of the spatial gradient of displacements is limited by the

separation between gage positions, we present the strain results for locations where the

gage separation is the minimum (i.e., 5 mm). The radial and tangential strain histories in

different low porosity hard rocks at the 15- to 20-mm, 20- to 25-mm, and 25- to 30-mm
ranges are shown superimposed in Figures A-I through A-3, and the strain paths for each

test are shown in Figures A-4 through A-8. Repeatability between tests is demonstrated for
the three positions in Figures A-9 through A- 11.
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Figure A-i. Strain histories for 15- to 20-mm range in Sierra White granite and
Katahdin granites and limestone.
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Figure A-2. Strain histories for 20 to 25-mm range in Sierra White granite
and Katahdin granites and limestone.
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Figure A-3a Strain histories for 25 to 30-mm range in Sierra White granite and
Katahdin granites and limestone.
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Figure A-4. Strain paths at different ranges in Sierra White granite (Test 563).
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Figure A-5. Strain paths at different ranges in Katahdin fine-grain granite
(Test 571).
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Figure A-6. Strain paths at different ranges in Katahdin limestone (Test 572).
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Figure A-7. Strain paths at different ranges in Katahdin coarse-grain granite
(Test 577).

A-8



I1.5I I

1.0
15-20 mm

U)

<

05r ~ 20-25 mm

25-30 mm

0 ...... . .. ...

0 -0.5 -1.0 -1.5

TANGENTIAL STRAIN, e (9/)
RA-6645-63

Figure A-8. Strain paths at different ranges in Katahdin fine-grain granite
(rest 579).

A-9



1.5 .

-Sierra White (Test 563)
Katahdin Fine-Grain (Test 571)

....... Katahdin Limestone (Test 572)
- -Katahdin Coarse-Grain (Test 577)

Katahdin Fine-Grain (Test 579)

1.0,

I-

0.5

0 -0.5 -1.0 -1.5

TANGENTIAL STRAIN. ce (%)
RA-6645-64

Figure A-9. Comparison of strain paths for the 15- to 20-mm range in Sierra
White granite and Katahdin granites and limestone.
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Figure A-i 0. Comparison of strain paths for the 20 to 25-mm range in Sierra
White granite and Katahdin granites and limestone.
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Figure A-il. Comparison of strain paths for the 25 to 30-mm range in
Katahdin granites and Sierra White granite.
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APPENDIX B

REDUCED DISPLACEMENT POTENTIALS (RDPs) AND REDUCED
VELOCITY POTENTIALS (RVPs)

An outline of the treatment of elastic spherical waves is provided here to show how

we obtain the reduced velocity and displacement potentials (RVPs and RDPs) from the

measured particle velocity histories. The RDPs and RVPs determined from the

experimental records are shown in this Appendix.

In spherical coordinates (r,0,0), a spherically symmetric elastic field has a radial

displacement 4, strains er and r = ce, and stresses 0 r and a; = 0 that depend only on the

radial coordinate, r, and the time, t. The kinematic relations are

Er- D4 =r7 (B-1)

and Hooke's law is

r =(+ 2g) Er + 24e r = 4r + 2(X + I) E0 (B-2)

where X and It are the Lame constants (t is the shear modulus). In terms of Young's
modulus, E, and Poisson's ratio, *g,

X = E P& E X + 2 (1 -)E (B-3)(1 + 5) (1 - 21 ) 2(l + 15) (1 + 15)(1 - 10)

The equation of motion of an element of material is

0r 2 2-0r + -r (cr - o0) = p a-- 1(B-4)

in which p is the material density. Substitution of the stresses, eq. (B-2), and then the
strains, eq. (B-l) changes eq. (B-4) to

d2 2 2g 1 o~
a24 + g2 1 (B-5)dr2 r r r2  c2 at2
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in which c2 = (X + 2t)/p, c being the P-wave speed. Differentiation of eq. (B-5) with
respect to time t shows that the radial particle velocity u = D/& satisfies the same equation.

To find the solution of eq. (B-5), let (r,t) be a displacement potential so that

(B-6)

Then, eq. (B-5) becomes

a2(ro) 1 a2(ro) (B7)
o~r2 c2  t2 (

which is the standard form of the wave equation. The solution of eq. (B-7) that describes
P waves propagating outwards from a spherical source of radius r = a is

O = r(t -_ (B-8)

where the function V is the reduced displacement potential (RDP). If the wave starts from
the source at radius r = a at time t = 0, the wave arrival time at radius r is ta = (r - a)/c, so
the RDP applies at this radius only when t > ta. Let r = t - (r - a)/c be the the time measured
from the time of arrival. Then,

1= r ) = t - (r-a)/c (B-9)

According to eqs. (B-6) and (B-9), the displacement is related to the RDP by

'O(T) (B-10
_"rc r2  (B-l0)

where the dot indicates differentiation with respect to the argument, r. The choice of the
displacement potential value at the wave front given by 0(0) is arbitrary, so we choose
0(0) = 0. Also, the displacement at the wave front is zero, so ao/o)r = 0 at ' = 0. Hence,
by eqs. (B-9) and (B-10), we have

V(0) = 0 (0) = 0 (13-11)

The solution of eq. (B- 10) giving the RDP at the radius, r, where the displacement
history is measured is simply
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()= - cr e-C /r f t (r,V') ec' '/r dT' (B- 12)
0

Equation (B-12) was used to calculate the RDPs for the spherical wave experiments

in the Katahdin granite and limestone experiments, which are shown in Figures B-I

through B-5.

An analogous expression for the reduced velocity potential (RVP) is derived in the

same way. The particle velocity, u, satisfies eq. (B-5) and when a velocity potential, X, is

introduced through the definition

u - (B- 13)

we find that rX replaces ro in the standard wave equation, eq. (B-7). For outgoing waves,
1 r-a

Xry(t ) (B-14)
r c

or

= IT't)  rt = t - (r - a)/c (B- 15)

and 7(T) is the RVP. Consequently, the particle velocity is related to the RVP by the
equation

=" rc t (B-16)

The value of the velocity potential is arbitrary at the wave front, so we choose X(O) = 0.
However, the value of the particle velocity at the wave front need not be zero, and we have

y(O) = 0 (0) = rcu(r,0) (B- 17)

where u(r,O) is the jump in velocity at the wave front. The solution of eq. (B- 16) with
)(0) = 0 gives the RVP in the form

't

Y"T) =cre'CT/r f u(r,,c') eCX'/r dt' (B-18)
0
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RVP histories determined from the experimental records by using eq. (B- 18) are

shown in Figures B-6 through B-10.

If a pulse in a cavity causes permanent deformation around the spherical cavity, we
let the radius r = a be the radius beyond which the material remains elastic. In these cases,

the final displacement in the elastic region will not be zero; the final particle velocity will
still be zero. Let the final displacement, 4.(r), be established at radius r > a at time "td.

Formula (B-12) then gives

Td

x(= - cre - -/r J e(r,') c '/f dr' - r 2 4.(r) { 1 - eC(@'d)/r}
0

for x > Td, so V(oo) = XV* is

V - r2 4.(r) (B-19)

A similar treatment of formula (18) gives 'y. = 0 because u.*(r) = 0.
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Figure B-I. Reduced displacement potentials (RDPs) in Sierra White granite
(Test 563).
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Figure B-2. Reduced displacement potentials (RDPs) in fine-grain Katahdin
granite (Test 571).
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Figure B-3. Reduced displacement potentials (RDPs) in Katahdin limestone
(Test 572).
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Figure B-4. Reduced displacement potentials (RDPs) in coarse-grain
Katahidin granite (Test 577).
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Figure B-5. Reduced displacement potentials (ROPs) in fine-grain Katahdin
granite (Test 579).
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Figure B-6. Time histories of reduced velocity potentials (RVPs) in Sierra
White granite (Test 563).
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Figure B-8. lime history of reduced velocity potentials (RVPs) in Katahdin
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Figure B-9. Time history of reduced velocity potentials (RVPs) in coarse-grain
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